The stream order or waterbody order is a Natural number used in geomorphology and hydrology to indicate the level of branching in a river system.
There are various approachesKoschitzki, 2.3, pp. 12ff to the topological ordering of or sections of rivers based on their distance from the source ("top down"Weishar, p. 30.) or from the confluence (the point where two rivers merge) or river mouth ("bottom up"Weishar, p. 35.), and their hierarchical position within the river system. As terminology, the words "stream" and "branch" tend to be used rather than "river".
This type of stream order indicates the river's place in the network. It is suitable for general cartographic purposes, but can pose problems because at each confluence, a decision must be made about which of the two branches is a continuation of the main channel, and whether the main channel has its source at the confluence of two other smaller streams. The first order stream is the one which, at each confluence, has the greatest volumetric flow, usually reflecting the long-standing naming of rivers. Associated with this stream order system was the quest by geographers of the 19th century to find the "true" source of a river. In the course of this work, other criteria were discussed to enable the main stream to be defined. In addition to measuring the length of rivers (the distance between the farthest source and the mouth) and the size of the various drainage basin, geographers searched for the stream which deviated least at the actual confluence, as well as taking into account the successive names of rivers and their tributaries, such as the Rhine and the Aare or the Elbe and the Vltava.
The Strahler order is designed to reflect the hydromorphology of a Drainage basin and forms the basis of important hydrographical indicators of its structure, such as its bifurcation ratio, drainage density and frequency. Its basis is the drainage divide line of the catchment. It is, however, scale-dependent. The larger the map scale, the more orders of stream may be revealed. A general lower boundary for the definition of a "stream" may be set by defining its width at the mouth or, referencing a map, by limiting its extent. The system itself is also applicable for other small-scale structures outside of hydrology.
Shreve stream order is preferred in hydrodynamics: it sums the number of sources in each catchment above a stream gauge or outflow, and correlates roughly to the discharge volumes and pollution levels. Like the Strahler method, it is dependent on the precision of the sources included, but less dependent on map scale. It can be made relatively scale-independent by using suitable normalization and is then largely independent of an exact knowledge of the upper and lower courses of an area.
Horton proposed to establish a reversal of that order. Horton's 1947 research report established a stream ordering method based on vector geometry. In 1952, Arthur Strahler proposed a modification to Horton's method. Both Horton's and Strahler's methods established the assignment of the lowest order, number 1, starting at the river's headwater, which is the highest elevation point. Classical order number assignment correlates to height and elevation and traces upstream, but Horton and Strahler's stream ordering methods correlate to gravity flow and trace downstream.
Both Horton's and Strahler's stream ordering methods rely on principles of vector point-line geometry. Horton's and Strahler's rules form the basis of programming algorithms that interpret map data as queried by Geographic Information Systems.
The Strahler and Shreve methods are particularly valuable for the Computer model and morphometric analysis of river systems, because they define each section of a river. That allows the network to be separated at each gauge or outflow into upstream and downstream regimes, and for these points to be classified. These systems are also used as a basis for modelling the water budget using storage models or time-related, precipitation-outflow models and the like.
In the GIS-based earth sciences these two models are used because they show the graphical extent of a river object. Hack, Strahler and Shreve order can be computed by RivEX, an ESRI ArcGIS Pro 3.3.x tool.
Research activity following Strahler's 1952 report has focused on solving some challenges when converting two-dimensional maps into three-dimensional vector models. One challenge has been to convert rasterized pixel images of streams into vector format. Another problem has been that map scaling adjustments when using GIS may alter the stream classification by a factor or one or two orders. Depending on the scale of the GIS map, some fine detail of the tree structure of a river system can be lost.
Research efforts by private industry, universities and federal government agencies such as the EPA and USGS have combined resources and aligned focus to study these and other challenges. The principal intent is to standardize software and programming rules so GIS data is consistently reliable at any map scale. To this end, both the EPA and USGS have spearheaded standardization efforts, culminating in the creation of The National Map. Both federal agencies, as well as leading private industry software companies have adopted Horton's and Strahler's stream order vector principles as the basis for coding logic rules built into the standardized National Map software.
Horton and topological stream orders
Comparison of classic stream order with Horton and Strahler methods
Usage
See also
Sources
External links
|
|